

Development Standards & Practices Used
● Development

○ Each team member will focus on researching a specific element of the project.
○ Team will utilize new information to generate a plan in regards to building and integrating

a VR Environment modularly.
○ The development process will follow a Waterfall life cycle.

● Communication
○ Weekly Zoom meetings to cover progress, have open discussion, and create a plan for the

following week.
○ Private chat for quick, informal communication.

● Coding Style
○ Consistent naming conventions, descriptive commenting, and regular testing.
○ Have modular design and implement a design pattern.

● Digital design
○ Use of Perlin Noise Algorithm for generating terrain
○ Use the Three.js graphics API
○ Implement procedural generation to have an ever expanding world

● 1362-1998 - IEEE Guide for Information Technology - System Definition - Concept of Operations
(ConOps)
○ Provides a uniform scheme for preparing and presenting a concept of operations document

● IEEE 1448a-1996 - Standard for Information Technology - Software Life Cycle Processes
○ Establishes a common framework for software life cycle processes, with well-defined

terminology, that can be referenced by the software industry
● IEEE 12207-1996 - ISO/IEC International Standard - Information Technology - Software Life Cycle

Processes
○ Provides a common framework for developing and managing software. This standard

provides industry a basis for software practices that would be usable for both national and
international business

Engineering Constraints
● Use of THREE.js limits the programming language to JavaScript
● Required to be a web application
● Achieve the Engineering requirement of running on a reasonably priced and attainable computer
● Time constraint: 2 semesters to get project done

Summary of Requirements

1

● Explorable 3D world (first person perspective)
● Nature-themed world
● Full-scale environment, including life sized mountains and trees (1-to-1 scale)
● Use procedural generation when possible
● Basic collision detection
● Fly-through mode and walk-through mode
● No noticeable delay/choppiness while exploring the world (30 fps)
● Core code should not be platform specific
● Core code should be modular and extensible

Applicable Courses from Iowa State University Curriculum
● CprE: 185, 288, 308, 388
● ComS: 227, 228, 309, 311, 327, 329, 339, 352, 363

New Skills/Knowledge acquired
● Working with Three.JS API
● Working with JavaScript language
● Working with 3D computer graphics
● Creating and working with procedural generation algorithms
● Using perlin noise terrain generation
● Creating and working with soundscapes

2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5
1.2 Problem and Project Statement 5
1.3 Operational Environment 5
1.4 Requirements 5
1.5 Intended Users and Uses 6
1.6 Assumptions and Limitations 6
1.7 Expected End Product and Deliverables 7

2 Project Plan 7
2.1 Task Decomposition 7
2.2 Risks And Risk Management/Mitigation 8
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 9
2.4 Project Timeline/Schedule 9
2.5 Project Tracking Procedures 10
2.6 Individual Efforts 10
2.7 Other Resource Requirements 10

3 Design 11
3.1 Previous Work And Literature 11
3.2 Design Thinking 11
3.3 Proposed Design 12
3.4 Technology Considerations 14
3.5 Design Analysis 15
3.6 Development Process 15
3.7 Design Plan 15
3.8 Security Concerns and Countermeasures 15

4 Testing 16
4.1 Interface Testing 16
4.2 Acceptance Testing 16
4.3 Results 16

5 Implementation 17
6 Appendices 18

6.1 Appendix I - Operation Manual 18
6.2 Appendix II - Alternate Designs 18
6.3 Appendix III - What We Learned 19

7 Closing Material 19
7.1 Conclusion 19
7.2 References 20

3

https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3znysh7
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2et92p0
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.4d34og8
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.26in1rg
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.35nkun2
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.44sinio
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.z337ya
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.1y810tw
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3whwml4
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.qsh70q
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3as4poj
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.3as4poj
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.147n2zr
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.23ckvvd
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.ihv636
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.32hioqz
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.1hmsyys
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.41mghml
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2grqrue
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.vx1227
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.vx1227
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.41mghml
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.2grqrue
https://docs.google.com/document/d/1s083Db4Cz-2MUMDxew86ivL5_RdQpjAX/edit#heading=h.vx1227

List of Figures
Figure 1. Use-Case Diagram 6
Figure 2. Task Decomposition Diagram 8
Figure 3. Project Timeline Gantt Chart 9
Figure 4. Individual Efforts 10
Figure 5. Design Thinking Diagram 12
Figure 6. Application Flow Diagram 12
Figure 7. Three.js Test Image 13
Figure 8. Architecture Diagram 14

4

1 Introduction
1.1 ACKNOWLEDGEMENT

We would like to thank and acknowledge Professor Mathew Wymore for his time, effort, and support during
the development of this project.

1.2 PROBLEM AND PROJECT STATEMENT

Problem Statement:
The COVID-19 pandemic is mentally and emotionally stressful, and has limited opportunities for activities
such as vacationing and connecting with nature. This project aimed to create an explorable, full-scale
three-dimensional virtual nature environment for the purpose of relaxation and stress relief in the stressful
time of COVID-19. Planned unique features included a 1:1 scale with reality (how big should that virtual
mountain REALLY be?) and elements of procedural generation. Due to these features, the direct use of a
low-level graphics API, Three.js, was used, and various memory and CPU optimizations were needed to be
employed to achieve satisfactory performance. Programming languages included javascript and html.

Project Statement:
To get this project done, we will be using the Three.js graphics API to design the world. We will design all
aspects of the world on a 1-to-1 scale with real life, such as trees, mountains, clouds, etc. We will create an
algorithm using procedural generation which will help generate all aspects of the world randomly so that
everyone's world will be unique every time they play. We plan on implementing a fly-through mode and a
walk-through mode so that the users can choose either one to explore the world. We expect our application
to run at 30 fps with no visible choppiness or lag. Lastly, if we have ample time, we will implement a nature
themed soundscape to the application as well.

1.3 OPERATIONAL ENVIRONMENT

The application we created relies on a web browser to be executed. The machine used to power the
application must have a GPU and Processor powerful enough to support a 3-D generated environment. This
system will likely operate indoors and be sheltered from any harmful physical conditions.

1.4 REQUIREMENTS

Functional Requirements:
● The User shall be able to load into a virtual Environment upon startup
● The User shall be able to move around and explore the world freely
● Must include collision detection
● The User will have the ability to choose between a fly-through and walk-through mode
● The environment must be 1:1 scale with reality
● The game must implement a soundscape for the environment

Nonfunctional Requirements:
● The rendering of the environment must be aesthetically pleasing
● The movement/usability while exploring environment must be simple and effective
● The application must run on a reasonably priced and attainable computer.
● The Game must contain elements of procedural generation

5

1.5 INTENDED USERS AND USES

Our user base has the potential to be very large. Anyone who is trying to explore a 3D virtual world for the
purpose of relaxation as well as anyone who wants to explore an environment that is 1:1 scale is a potential
user. Our platform is to be used as a form of stress relief tool that helps people escape the “‘normal” world
and presents them with a virtual world that relaxes their mind.

Figure 1. Use-Case Diagram

1.6 ASSUMPTIONS AND LIMITATIONS

When it comes to our project's assumptions, we assumed our final project would end up being a web
application, so our game is limited to running on a web browser rather than a phone application or
something else like that. Our application is a single player game, which means only one player can play on a
browser at a time. Also this means we did not implement a multiplayer feature where people on other
browsers can join your world. We implemented various buttons so our user has control of his movement in

6

the game, this includes up, down, left, right, move forward, move backwards, the up and down buttons only
work when in fly mode.

When it comes to our project's limitations, the so-called hike in our game will be limited to one single
location, so you can not move or fast travel to a different location while in the game. You will spawn in a
forest of some kind and you will only be able to explore that forest, you can not change your location type,
such as a desert or ice biome, while playing. Our game is limited to a first person view, we did not
implement anything else, such as a third person view. Also, the main thing is the fact that we only had two
semesters to work on our project, which included spending a lot of time learning various things like our
three.js 3D graphics API and JavaScript.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

We are delivering our product as a web application. The final application has a 1:1 scale environment where
the objects are created algorithmically using a procedural generation algorithm. The application is
accessible to any user using a web portal, such as Google Chrome or Safari. The user has the ability to access
the front end of the platform only.

We are also delivering a manual to the client that will elaborate on the technologies used to create our
platform. We are also including an instruction section in this manual as well as a walk through of the
platform so that the client and the user is familiar with the product. This manual is given at the end of this
final report as well, within Appendix I.

2 Project Plan
2.1 TASK DECOMPOSITION

Finished Tasks:
● Learned Three.js and WebGL (Research and Tutorials)

○ Included learning about procedural generation algorithms
● Created the environment of our application
● Created the procedural generation algorithm that generates objects in the world

○ Creates all aspects of the world at a 1:1 scale
● Created user movement within the world

○ First person view
○ Including a walkthrough mode and flying mode

● Created a collision detection system
● Created a nature themed soundscape
● Tested all of the applications features

7

Figure 2. Task Decomposition Diagram

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

This was the team’s first time working with Three.js and WebGL, and a few of us are familiar with Javascript.
As such we had the risk of dealing with a steep learning curve and its hurdles to overcome. The estimated
probability for this risk was 0.3.

Another risk we faced is the difficulty and complexity in writing procedural generation algorithms as we also
had a lack of experience in that area. The estimated probability for this risk is 0.6.

For our risk mitigation plan, we decided to follow the ‘watch and monitor’ risk mitigation strategy which
involves monitoring the project for risks and consequences and identifying any changes or shortcomings
that can affect the impact of the risk. For example, if the teammates that are working on tasks such as
developing a procedural generation algorithm run into any problems or are stuck at writing the algorithm,
the rest of our teammates will step in and help them solve their problem. This plan worked out very well

8

throughout the duration of our project because we all helped each other on our individual tasks numerous
times to help solve problems quicker.

Other risks include:
● Bugs in code that were time consuming to solve, estimated probability for this risk is 0.4.
● Scheduling conflicts with teammates, estimated probability for this risk is 0.1.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

The first milestone we got done this semester was to get the unique terrain generated using perlin noise.
The next milestone was to create the procedural generation algorithm which randomly generated objects
like trees, bushes, rocks, grass, water, etc. After that we got the first-person walk through and fly through
modes finished, both of which included collision detection. The last milestone we got done was to create a
nature themed soundscape for our environment. After getting all of these main milestones done, we spent
the rest of the semester perfecting the environment so it looked realistic and ran as smoothly as possible.

For the project metrics, the application is a 1:1 scale model of the Earth’s environment. The application has
procedural generation implemented which generates objects for the environment dynamically using an
algorithm we created. The application has the option for the user to be able to choose between walkthrough
mode as well as flying mode while in the environment. The application is also equipped with collision
detection that detects any kind of contact as well as collision between the user and the procedurally
generated objects.

For the evaluation criteria, we evaluated the work done by using many types of tests for example; Unit
testing, System testing, Stress testing, etc. We measured the progress of the project by using Trello.

2.4 PROJECT TIMELINE/SCHEDULE

Figure 3. Project Timeline Gantt Chart

9

2.5 PROJECT TRACKING PROCEDURES

For this part, we used four different types of web-based platforms. They each played an important role in
keeping our project on track throughout this second semester. They are:

1. Trello board: We used this to distribute tasks and keep track of who is doing what part of the
project on a weekly basis.

2. Discord: This is where we did most of our communication, we used this for anything. This includes
questions, meeting planning etc.

3. GitLab: This was used for storing and maintaining our code for the project. It also helped us keep
the code structured and safe. With this, we could also experiment and try new ideas because of the
branch feature of GitLab.

4. Webex: This is what we used to have our weekly meetings. On this platform, we had live discussions
and assigned tasks to group members each week. Also, we had discussions with our project
advisor/client and clarified any lingering concerns that discord communication could not handle.

Together, all of these platforms kept us organized, on track and synchronized with each other throughout
the duration of the project this past semester.

2.6 INDIVIDUAL EFFORTS

Name Cumulative hours Main task

Trevor Nemes 75 Procedural generation algorithm

Tyler Hassfield 80 First-person movement

Opeyemi Abass 50 Procedural generation algorithm

Aashu Mallik 72 Water generation algorithm

Akhilesh Ratnakumar 50 Terrain/sky generation

Zian Li 42 Terrain/sky generation

Figure 4. Individual Efforts

2.7 OTHER RESOURCE REQUIREMENTS

● Microsoft Visual Studio
● Three.js API
● Use of a web server
● No financial requirements

10

3 Design
3.1 PREVIOUS WORK AND LITERATURE

Our project aimed to create an explorable, full-scale three-dimensional virtual nature environment with
unique features including a 1:1 scale with reality and elements of procedural generation. The use of a
procedural generation algorithm to create unique and infinite worlds has been used in many different
games. The big game that we looked at was Minecraft [1], which uses procedural generation to create
endless unique chunks so that the world is infinite and never repeating. For our project, we plan on using
Perlin noise, which is a procedural texture primitive, used to create unique landscapes like hills and
mountains. Minecraft also uses this as a way to create various different landscapes and textures within the
different biomes.

The main difference between Minecraft and our project is that we planned on creating all the various
features, like trees and mountains, at a 1:1 scale with reality. Minecraft does not have this feature since trees
are fairly small and even the biggest mountains in the game are only the size of a small hill. In our project
we want our game to seem as real as can be, that is why we will also use real looking textures and graphics,
unlike Minecraft. Minecraft uses cartoon-like graphics in their game which do not look real in any fashion,
while for our project we want every aspect of our game to match up with reality and give the user a sense of
nature.

One other game that we did some research on because it has a similar purpose to our game was Firewatch
[2], which is a game all about escapism. It's about running away from real life, from it's hardships, from your
mistakes. Almost every character in the game has a troubled past they are trying to flee from, mistakes they
are trying to avoid facing, all of which are inescapable facts of life. That is a lot like what our game is meant
to do, we want our game to be a place for people to escape their current COVID-19 life which is probably full
of stress and hardships. The fact that Firewatch has somewhat of the same purpose as our game, we made
sure to do some research on this game and see what we could learn from it in order to improve our game.
Firewatch is based in a forest which our game will be too, their game is also all in first person which is partly
why we chose our game to be all in first person. Also, in Firewatch you can interact with some things in the
environment, which is why we are motivated to hopefully have some things in our games environment that
the user can interact with. The only major difference between Firewatch and our game is that Firewatch has
some spooky vibes to it sometimes which might freak the user out, we wanted to make sure our game only
brings relaxing and happy vibes to the user while they are exploring our games virtual environment.
Firewatch sometimes uses silence or weird sounds to bring in these spooky vibes, so we will make sure we
don’t do anything that could possibly weird the user out while playing our game. Overall, Minecraft and
Firewatch helped us a lot in planning and creating our game and its features over the course of this
semester.

3.2 DESIGN THINKING

We first decided to design our platform using OpenGL and C++, we worked on the tutorials for about 3
weeks and learned different aspects of OpenGL. But later by doing more research and communicating with
our client, we found out that using OpenGL to build a web platform wouldn’t be an ideal solution. If we
used OpenGL we would have to convert the built application into a web app which would take twice as
much time. So after researching a lot we decided to switch to use WebGL and Three.js. We chose Three.js
because every web platform that runs on a browser is built on Javascript as browsers only understand

11

Javascript. We also chose Three.js because it would be easily integrated with WebGL. We also found out that
Three.js supports procedural generation which was a requirement for our project.

Figure 5. Design Thinking Diagram

3.3 PROPOSED DESIGN

● We switched what we are going to use for our application. We originally planned to use OpenGL
but after some research we decided to use three.js.

● The flow of how the client will interact with the application looks like the diagram below:

Figure 6. Application Flow Diagram

● We had people learn different parts of three.js, splitting up into groups so we can cover more
material in a shorter period of time. We have people working on procedural generation algorithms,
some working on generating 3D terrain, and others working on first-person movement.

12

● Using three.js satisfied the barebones 3D graphics application and proof-of-concept 3D graphics
application requirements.

Test Applications:
Throughout the first semester, we spent most of our time working on various Three.js test applications so
we could learn everything there is to know about Three.js. We spent most of the semester on this because
none of us had any prior experience with 3D graphic design or Three.js, so we needed to make sure we had
a good understanding of Three.js before starting our projects application. We had two people work on
learning how to create procedural generation algorithms using Three.js, two working on first-person
movement, and two people work on the creation of the environment. After splitting up into focus groups,
we had one main image from the application some of us worked on to share that can give you somewhat of
an idea of what our application will look like.

Figure 7. Three.js Test Image

This image shows an infinite environment with skyscrapers of different sizes and colors procedurally
generated randomly throughout the environment. Our plan in our project was to have an algorithm like that
which will procedurally generate things like trees, bushes, rocks etc. instead of buildings.

13

Figure 8. Architecture Diagram

3.4 TECHNOLOGY CONSIDERATIONS

Three.js is a cross-browser JavaScript library and application programming interface used to create and
display animated 3D computer graphics in a web browser using WebGL. Three.js has the following strengths
and weaknesses.

● Strengths
○ Designed to make working with basic game-quality 3D graphics easier.
○ Gives a very clean, low level access to all the rendering capabilities.
○ Loads instantly and integrates well into existing website code.
○ Easy to work with javascript libraries.
○ Convenience of accessing and working with it through the web browser.

● Weaknesses
○ Lacks in lot of documentation and informative references
○ Since the framework changes frequently, a lot of outdated solutions might be available

online.
○ It’s more of a renderer than a real engine. Because of this, it will easily reach its limitations

in terms of visual processing power with more complex visuals and motions.
We believed that Three.js fit our needs of rendering a procedurally generated, interactive 3D environment
relatively well. Since our project will not involve too many complex visuals and motions, Three.js should be
able to handle rendering a natural environment filled with trees, greenery and mountains. When it came to
outdated solutions found online, we made sure to look for the latest tutorials that did not use old versions
of the library.

14

3.5 DESIGN ANALYSIS

Our initial design plan worked very well with how we expected it to go. As we started working through
various three.js tutorials, splitting up the work into different focus areas helped us learn more and cover
more material as a group in a shorter period of time. Since we are on a tight schedule in getting this project
done in two semesters, we needed a design plan that helped us learn the three.js API in a shorter time
frame, and our design plan does just that. Also, the fact that we chose to use three.js for our project worked
out perfectly because it had everything we needed to cover all of our project requirements, as well as the fact
it is a cross-browser library so it works on Windows and Mac Operating Systems. We needed to use a
cross-browser library because our group is a mix of Windows users and Mac users, so three.js made it easier
for us to work together. When it comes to our thoughts on our design plan, we believe that it worked out
perfectly in what we needed to accomplish. At first, our plan was to just do random three.js tutorials and
learn whatever we could, but we soon realized that that plan would waste a lot of time. That is why we soon
after modified our plan so that we all could split up into focus groups and focus on learning specific things
with three.js. This design modification helped us learn three.js a lot more efficiently, and prevented us from
learning stuff that would not be needed. When it comes to the second semester of work, we also split up the
work in the same way as the first semester. This worked out great because as a team we were able to get all
of the major parts of the project done a lot more efficiently, and then move on to perfecting the project and
adding bonus features.

3.6 DEVELOPMENT PROCESS

Our team decided to use the waterfall process model for the course of the project. We spent the first few
weeks gathering information like requirements, work environment, techniques we would need to learn, and
what APIs we would need to use. From this, we decided that we would work on learning new material while
generating a better understanding for the project with our client. Once we are knowledgeable enough to
begin coding, we will have developed a thorough understanding of the scope of the project, specific
requirements, dependencies, and a timeline. Due to the nature of the project and the given information we
thought it would be best to follow a waterfall model. After gaining all of the knowledge needed, we split up
the work and started coding our individual parts of the project.

3.7 DESIGN PLAN

The main use case of our project is to allow the user to explore the wild in the virtual realm, and all of our
models would be centered around and serve this use case. There are three main models, terrain generation,
procedural generation of objects and an interface to interact with the environment. The environment
needed to be generated first, then other objects like trees and bushes would be populated within it.

3.8 SECURITY CONCERNS AND COUNTERMEASURES

Since this project is a web-browser based application, there is little to no network security concern. To
prevent user data leakage, we would not require a user registration or login, nor do the application store the
user activity anywhere in the server. However, due to the size of possible memory allocation from using this
application, it is possible to over allocate the memory space and reduce or impact the performance of other
running software. To counter this memory allocation problem, the team is still working on optimizing code
structure and algorithms.

15

4 Testing
4.1 INTERFACE TESTING

When it comes to testing the interfaces of our application, this included testing the web server interface and
the application server interface. We will not be needing a database for our project, so we will not need to
worry about testing a database interface. Most of the testing we did on these interfaces was edge case
testing, in order to test certain things about each interface that might not normally be tested or come up
while playing the game. This testing helped prevent a lot of annoying little bugs within the two interfaces,
and thus created an overall better final project. We did interface testing on our application to ensure that
end-users do not encounter any problems when playing our game. Also, to check if a solution is capable of
handling network failures between an application server and website. Lastly, we wanted to ensure that
errors are handled properly or return an error message for any query made by our application when running
and being used.

4.2 ACCEPTANCE TESTING

We had scheduled demonstrations with our whole group and faculty/client to show the progress and that
the functional requirements are being met. For the non-functional requirements, we wrote a status report
every two weeks to demonstrate and inform the client that the non-functional requirements were being
met.

4.3 RESULTS

When we first started testing our application, we saw plenty of failures in the integration of our project
application, as well as the stress and performance tests that we ran to make sure our application was
running well. This was because we needed to make sure our final application has no noticeable
delay/choppiness while exploring the world, since this was a requirement straight from our client. We
mainly focused on testing the main parts of our code and the main things which we knew would cause the
majority of the problems in our code, however, we also knew there would be many other unexpected issues
within our code that we would need to solve and eventually test for. The main problem that we ran into
throughout the semester while coding our application was getting our application to work and show on a
live web server using Three.js because of the fact none of us were experts after only one semester of learning
and practicing with the API. We tested our application as much and as thoroughly as possible in the short
time we had in order to make sure our final product is of high quality for our client.

One top of all that, the main way we tested throughout this second semester was just by loading up our
application and doing various things like walking up and down mountains, running into trees and bushes,
jumping, flying, etc. in order to see what errors/failures came while performing these actions. We mainly
wanted to make sure we covered all possibilities for the user to make sure that absolutely nothing could go
wrong to ruin the users experience and immersion. While performing these tests on the jumping feature, we
eventually got it working to perfection to where no matter what we did there were never any weird bugs.
Another big thing we tested was the flying feature, which ended up being easier to implement that we
expected. After testing this feature, just like jumping, it ran smoothly and perfectly with no known bugs or
failures. The one thing we worked on and tested the most throughout the semester was the walking feature.
This feature was the hardest to implement due to the fact the terrain is not even, with there being
mountains and hills throughout the environment. After a lot of testing, we finally came to the conclusion
that the only way to maximize this features performance was to lower the frame rate of our application. This
made it so the user could walk while the frame rate gave the code time to accurately update the user's

16

y-value so that they were always on top of the terrain no matter what. This feature was by far and large the
one we spent the most time on, even after all the work and testing we put in, the feature is far from perfect
due to the fact it is not as smooth and clean as the flying feature. However, in the end, after all the work and
testing we carried out, our final project ended up being a pretty good success, even though it was not
perfect.

5 Implementation
By the end of our first semester, our whole group should be pretty comfortable with coding in JavaScript and
using the Three.js API. We have our project created and pushed to our repository so that everyone in our
group can clone the repository to their local system, this gives everyone the opportunity to start working on
our project over winter break if they would like to, however, this is not required. Next semester, all our focus
will be on coding the different aspects of our project so that we have it all done by the end of the spring
semester. As talked about throughout this design document, our team has split into two groups of three,
one group focused on the creation of a procedural generation algorithm and another focused on creating
the games environment. We will stay in these focus groups going into next semester when we start coding
these aspects of our application. So, the team members that focused on procedural generation throughout
the first semester, will be focused on creating the procedural generation algorithm needed for our
application next semester. On the other hand, the team members that focused on creating the games
environment throughout the first semester, will be focused on creating our games environment needed for
our application next semester. We will be doing it this way because creating the environment and the
procedural generation algorithm are the two main parts of our application, so once we get those two things
done, we will have the bulk of our final application done. After we get those two things finished, as a group
we will work on first person walking and flying movement and collision detection. Once those things are
done, the only things left are testing the different parts of our app to make sure they work as intended as
well as to make sure there is no noticeable delay or choppiness while exploring the world. As touched on in
part 2.4 of this document, the project timeline, we would like to have all of the main components of our
application stated above done with at least 2-3 three weeks left in the semester so we can go through the
final testing phases to make sure the application has no bugs and runs as intended. This plan and schedule
is tentative, and can be changed if needed as we progress through next semester, but, our current plan for
next semester should be effective in helping us get our projects application done as efficiently as possible.

By the end of the second semester, we had our finished product to share with our client. Our
implementation for our project stayed somewhat consistent with our previous semesters implementation in
that we split up the work to get various parts done simultaneously. As talked about throughout this
document, our client had a lot of set features required for us to implement into our application. Based on
each of these features, we assigned one feature to each group member so that we could all work on one
main feature simultaneously. The features we split up between members included the terrain generation,
tree generation, rock and bushes generation, water generation, sky generation, and first person controls.
Our initial plan at the beginning of the semester was to have all of our major parts done around the halfway
point of the semester so then we could start putting everything together into one project. In order to do this
we used the git branch feature so that we could each create our code within our own branch, and then when
we were all done we could start merging our code together into the master branch. When it came to the
member working on the terrain generation, they needed to create a function that created a unique terrain
that included flatlands, hills, mountains, and textures on each to make it look realistic. For the tree
generation feature, we needed to create a function that procedurally generated multiple types of trees with

17

textures so they looked realistic. For the rock and bushes generation, this member just needed to create a
function that procedurally generated bushes and rocks into the environment as well as with textures on
them. Next, for the water generation, this member needed to create a function that placed water throughout
the environment, only on the lower parts of the terrain. Then, for the sky generation, this member needed
to create a realistic looking sky for the environment which included clouds, blue sky, a sun and light source
coming from the sun's direction as a way to make shadows in the environment. Lastly, the first person
controls were required to have walking and flying mode with collision detection implemented so at least we
could walk up and down mountains without falling through the terrain. By the halfway point in the
semester, as previously planned, all members got their individual parts done completely. After that, our plan
was to start merging all of our code together to eventually have one working project, with the master branch
on GitLab. Over the coming weeks we started by merging the first person controls with the terrain
generation code. This ended up being the hardest code to merge together which is why we planned to start
with it and give us plenty of time to get it done. After that, we spent approximately another three weeks on
merging the tree generation, bush/rock generation, sky generation, and water generation with the terrain
generation and first person controls code. After finally merging all of our parts together successfully, we then
spent the rest of the semester perfecting our application so it ran and looked as good as possible, as well as
polishing out the first person walking movement. As I talked about previously in the testing section, we
have a really hard time perfecting the first person walking movement in our project because walking
throughout a terrain that was not completely flat made it harder to implement without walking through
mountains instead of up them. As I said, we spent by far the most time working on the first person walking
movement, however, we did manage to finally get it finished to our liking in the final week of the semester.
After finally finishing that, our project was completely finished and successful in following the requirements
given to us by our client. By following our project plan and implementing it throughout this semester with
some minor alterations, we were able to finish this project completely in just one semester.

6 Appendices
6.1 APPENDIX I - OPERATION MANUAL

Access the application by opening a web browser and visiting http://sdmay21-19.sd.ece.iastate.edu/. Once at
the webpage, click on the “Take a Virtual Hike” tab to load up the application. Then, select the start button
to enter the virtual environment. The application allows the user to move freely around the environment
with the following controls:

● Mouse - Look around
● W - move forward
● A - move left
● S - move backwards
● D - move right
● Space bar - Jump

6.2 APPENDIX II - ALTERNATIVE DESIGNS

One of our initial goals was to implement a procedural generation algorithm that creates an infinite world.
Unfortunately, we were unable to achieve that due to the combination of two factors. One is the team’s lack
of experience writing such complex algorithms, and the second is the time constraint of working to
implement the many features within a semester. We had another design idea to implement a pathway on

18

http://sdmay21-19.sd.ece.iastate.edu/

the terrain the user could choose to walk on. However, we decided to abandon that idea as implementing
such a small detail turned out to be a lot more tedious, and the user could still walk anywhere on the
terrain, so there would be no point in it.

6.3 APPENDIX III - WHAT WE LEARNED

When we started this project, none of us knew anything about Procedural generation or creating a 3d virtual
environment or working with Three.js and Webgl. But as the semesters progressed we started gaining
expertise in every aspect of the project either by watching tutorials or by diving into the documentation.
Through trial and error, We learned to generate random objects using the Perlin Noise Algorithm, we
learned to create and render scalable 3d virtual environments in a web browser using Three.js and Webgl,
we learned to implement collision detection engine into our application, we learned to implement
soundscape to make the virtual environment seem realistic, we learned to implement first person view
controls for the user to navigate the environment, we learned to use Git for version control and most
importantly we have learned to work in an agile environment as a team.

7 Closing Material
7.1 CONCLUSION

We learned a lot working on this project, we were able to achieve most of our goals and have a fully
functional version of the game which users can use and experience.
We were able to stay on track, meet all our deadlines and practice effective communication.
The structure we laid out last semester was effective in keeping us on track and productive.
We were able to finish 90% of what we set out to achieve for the project. All but one of the core goals for the
project was achieved and the evidence and proof can be found on our team website.

We have a working model of the game, in which users can walk and explore the environment. The project
can run on all platforms as we planned at the beginning of the project. We were also able to achieve full
immersion for the user, by making the user experience the environment in first person view. We also made
the game user friendly by making the user experiences intuitive and also displaying useful instructions and
commands in the environment.

Our development process was functional and useful, we achieved this by using GitLab for everything that
has to do with the game code, discord for communication and reaching out for help, trello board for
assigning tasks to teammates and webX for our weekly meetings and making sure everyone is on track.

We also learned a lot and grew as an engineer in our respective fields. We gained a significant amount of
experience in working in a team, how to contribute to a project, being responsible, holding each other
responsible, how to communicate effectively, how to ask questions, proposed solutions to problems and how
to help teammates in the most effective way.
We also learned how to deal with not meeting goals, we were not able to achieve one of our core goals,
which was implementing procedural generation algorithms for the game environment.
Even without this, we were able to make the project work without any damage to user experience when
playing the game.

This was a great learning experience that we are all glad we did and because of, we are better prepared for
the real world.

19

7.2 REFERENCES

[1] “Procedural Generation in Game Development,” davidepesce.com, 16-Jun-2020. [Online]. Available:
https://www.davidepesce.com/2020/02/24/procedural-generation-in-game-development/. [Accessed:
08-Nov-2020].

[2] A. Webster, “Firewatch review: a game that perfectly captures the beauty and terror of nature,” The Verge,
08-Feb-2016. [Online]. Available: https://www.theverge.com/2016/2/8/10922560/firewatch-review-ps4-pc.
[Accessed: 08-Nov-2020].

20

