

Take a Virtual Hike

Client/Advisor: Mat Wymore Team Members: Trevor Nemes, Tyler Hassfield, Opeyemi Abass, Aashu Mallik, Akhilesh Ratnakumar, & Zian Li

Project Vision

- Problem: The COVID-19 pandemic is mentally and emotionally stressful, and has limited opportunities for activities such as vacationing and connecting with nature
- Solution: to create an explorable, full-scale 3D virtual nature environment
 - Purpose of relaxation and stress relief in the stressful time of COVID-19
 - To indulge the user in a realistic nature environment
- Our application will require a web browser to run on an OS
- Our app is made for anyone whose life could use a bit of stress relief and relaxation
 - Whether those stresses are from COVID-19 or not
 - These people's lives will be improved just by playing our game
 - Will improve the life of anyone that plays, no matter what

Conceptual Visual

- Procedurally generate an infinite 3D nature environment
 - Includes trees, grass, bushes, hills, mountains, etc.
 - All aspects will be placed randomly throughout the environment on startup
- Every aspect of our environment will be generated at a realistic 1:1 scale
 - Unlike games like Minecraft and No Man's Sky
- Our targeted clientele is anyone who needs or wants a break from the real world

Requirements

Functional

- The User shall be able to load into a virtual Environment upon startup
- The User shall be able to move around and explore the world freely
- The environment must include collision detection
- The User will have the ability to choose between a fly-through and walk-through mode
- The environment must be 1:1 scale with reality
- The Game must implement a soundscape for the environment (secondary requirement)

Requirements (cont.)

Non-functional

- The rendering of the environment must be aesthetically pleasing
- The movement/usability while exploring environment must be simple and effective
- The application must run on a reasonably priced and attainable computer.
- The application must contain elements of procedural generation

Technical and/or other constraints

• The application must be compatible with all web browsers

Conceptual Design Diagram

System Design

- User connects to application using HTTP connection
- User will be asked to register/login
- User will choose and load the environment
- User will interact with the environment using walk through or fly through mode
- Admin will oversee user privileges

Procedural Generation

- Procedural generation allows for an endless continus world and reduced memory requirement.
- Procedurally generated meshes, terren, and texture
- Perlin noise for texture and terrain generation with different dimension

Demo application using Perlin noise

Project Plan - Tasks

- Learn Three.js, Webgl and Procedural Generation
- Implement procedural generation algorithm to generate objects randomly
- Implement user controls
- Implement collision detection
- Test the application
- Create a soundscape for the world Optional

Project Plan - Risks & Mitigation

• Risks

- Steep learning curve
- Complexity in writing a procedural generation algorithm
- The application renders the 3d environment with a consistent frame rate
- Mitigations
 - Use Watch and Monitor strategy for monitoring the project for risks and consequences and identifying any changes or shortcomings that can affect the impact of the risk

Project Plan - Schedule

	Sep 14	Sep 21	Sep 28	Oct 5	Oct 12	Oct 19	Oct 26	Nov 2	Nov 9	Nov 16	Nov 23	Jan 25 (Semester 2)			End of Semester 2
Learning the Three.js API (Research and Tutorials)															
Start our software application															
Create the base environment of our application															
Create the procedural generation algorithm															
Work on having the algorithm generate objects at a 1:1 scale															
Implement a first person view															
Implement a walkthrough mode															
Implement a flythrough mode															
Implement collison detection															
Implement a soundscape (if we have extra time)															
Test all of our features and code, look for bugs/glitches															

Test Plan - Unit Testing

- Testing will be performed in isolation
- Components
 - First person movement controls
 - Procedural generation algorithm
 - Collision detection
 - Consistent framerate

Test Plan - Integration Testing

- Bring all components and testing them together
- Testing the web server interface and the application server interface
- Expect to run into problems when integrating components

Test Plan - Acceptance Testing

For a test to be accepted it must meet the following requirement:

- All previous test should run with no errors
- The key project requirement should be fully functional on all platforms
- The test should ensure that the product run multiple platform
- The test should ensure that the product is working in the way it has to

Conclusion

- We were able to meet all of our deadlines
- The structure we set up at the beginning of the semester was helpful in making us more productive
- We are in a good place to meet our clients expectations next semester

Next Semester

Next Semester, we plan to get a lot more hands on. This semester has been mostly about set up. We plan to achieve the following next semester:

- Have a working demo of the project
- Have a structured work flow of adding new features to the project
- Have a structured way of testing and improving the project code on GitLab
- Set up continuous integration for the project on GitLab
- Use an agile like framework for structuring our workflow

Thank you for listening!

